L16 Feb12 Quotient

Thursday, February 12, 2015

Quotient Topology

Given (X,J_X) , êther \sim or $q:X \xrightarrow{\text{onto}} Q$

The quotient topology If on 1/2 or Q $\int_{\mathbb{R}} = \left\{ V \subset X_{k} : \mathcal{F}^{1}(V) \in \mathcal{J}_{X} \right\}$

Circles

- 1. circle as [0,1]/~
- 2. $X = \mathbb{R}$, $J_X = J_{std}$

x~y if x-y ∈ Z

3. All the above are the "circle"

 $[0,1]/\sim \longrightarrow \mathbb{R}/\mathbb{Z} \iff \mathbb{S}^1$ homeo. $\{z \in \mathbb{C} : |z|=1\}$

Thursday, February 12, 2015 11

11:07 AM

4. Similarly, we have cylinder $([0,1] \times [0,1])/\sim$ where $(s_1,s_2) \sim (t_1,t_2)$ if $\{s_1-t_1|=0,1\}$

Gluing only on the 1st coordinate

5. Torus

Recall that it can be seen as

* Surface of revolution $\subseteq \mathbb{R}^3$ * $S' \times S'$, product topology

([0,1] \times [0,1])/\times where

\((s_1, s_2) \simes (t_1, t_2) \) if

\(|S_1 - t_1| = 0.1 \),
\(|S_2 - t_2| = 0.1 \)

Monday, February 16, 2015 8:20 PM

Note that from above pictures, apparently the result depends on how it is glued. In fact, all are homeomorphic, just "placed" differently in R3.

6. R^/Zr = S'x ··· × S', n-dim Torus

8:34 PM

7. Mobius strip or band

$$[0,1]\times[0,1]/\sim$$
 where $(s_1,s_2)\sim(t_1,t_2)$ if $(s_1,s_2)=(t_1,t_2)$ or $\{s_1-t_1\}=0,1$ $s_2=1-t_2$

For simplicity, often say identify (0,t) with (1,1-t) on [0,1]²

8. Klein Bottle

Identify (5,0) with (5,1) and (0,t) with (1,1-t) on $[0,1]^2$

Note. Klein Bottle F R3

But basic neighborhoods of any point | homes.

} ₹ € C : | ₹ 1 < 1 {

9 Projective Plane, RP2

Identify (5.0) with (1-5,1) and (0,t) with (1,1-t) on $[0,1]^2$

OR

Identify z with -z if |z|=1 on $\{z \in \mathbb{C} : |z| \leq 1\}$

Exercise. Show they are homeomorphic.