Quotient Topology
Given $\left(X, J_{X}\right)$, either \sim or $q: X \xrightarrow{\text { onto }} Q$
The quotient topology I_{f} on X / \sim or $Q^{X / \sim}$

$$
J_{q}=\left\{V \subset x / \sim: q^{\prime}(V) \in J_{x}\right\}
$$

Circles

1. Circle as $[0,1] / \sim$
2. $X=\mathbb{R}, J_{x}=J_{s t d}$
$x \sim y$ if $\quad x-y \in \mathbb{Z}$

3. All the above are the "circle"

$$
\begin{aligned}
& {[0,1] / \sim \underset{\text { homed. }}{\longleftrightarrow} \mathbb{Z} / \mathbb{Z} } \underset{\text { homeo }}{\longleftrightarrow} \mathbb{S}^{1} \\
&\{z \in \mathbb{C}:|z|=1\}
\end{aligned}
$$

4. Similarly, we have cylinder $([0,1] \times[0,1]) / \sim$ where

$$
\left(s_{1}, s_{2}\right) \sim\left(t_{1}, t_{2}\right) \text { if }\left\{\begin{array}{l}
\left|s_{1}-t_{1}\right|=0,1 \\
s_{2}=t_{2}
\end{array}\right.
$$

Gluing only on the $1^{\text {st }}$ coordinate

5. Torus

Recall that it can be seen as

* surface of revolution $\subset \mathbb{R}^{3}$
* $\mathbb{S}^{\prime} \times \mathbb{S}^{\prime}$, product topology
$([0,1] \times[0,1]) / \sim \quad$ where

$$
\downarrow_{\mathbb{R}^{2} / \mathbb{Z}^{2}}\left\{\begin{array}{l}
\left(s_{1}, s_{2}\right) \sim\left(t_{1}, t_{2}\right) \\
\left|s_{1}-t_{1}\right|=0,1, \\
\left|s_{2}-t_{2}\right|=0,1
\end{array}\right.
$$

Green

Note that from above pictures, apparently the result depends on how it is glued. In fact, all are homeomorphic, just "placed" differenty in \mathbb{R}^{3}.
G. $\mathbb{R}^{n} / \mathbb{Z}^{n}=S^{1} \times \cdots \times S^{\prime}, n$-dim Torus
7. Mobius strip or band $[0,1] \times[0,1] / \sim$ where $\left(s_{1}, s_{2}\right) \sim\left(t_{1}, t_{2}\right)$ if

$$
\left(s_{1}, s_{2}\right)=\left(t_{1}, t_{2}\right) \quad \text { or } \quad\left\{\begin{array}{l}
\left|s_{1}-t_{1}\right|=0,1 \\
s_{2}=1-t_{2}
\end{array}\right.
$$

For simplicity, often say
identify $(0, t)$ with $(1,1-t)$ on $[0,1]^{2}$
8. Klein Bottle

Identify $(5,0)$ with $(5,1)$ and
$(0, t)$ with $(1,1-t)$ on $[0,1]^{2}$
Note. Klein Bottle $\not \subset \mathbb{R}^{3}$
But basic neighborhoods of any point |l homes.

$$
\{z \in \mathbb{C}=|z|<1\}
$$

9. Projective Plane, $\mathbb{R} P^{2}$

Identify $(s, 0)$ with $(1-s, 1)$ and $(0, t)$ with $(1,1-t)$ on $[0,1]^{2}$
OR
Identify z with $-z$ if $|z|=1$ on

$$
\{z \in \mathbb{C}:|z| \leqslant 1\}
$$

Exercise. Show they are homeomorphic.

